Skip to main content

Mastering the Intelligence Lifecycle - Cybrary

Advanced Cyber Threat Intelligence

1. Introduction to the Intelligence Lifecycle

The course begins by outlining the intelligence lifecycle, a structured approach comprising:

  • Collection: Gathering raw data from various sources.
  • Processing: Organizing and structuring the collected data.
  • Analysis: Interpreting processed data to generate actionable intelligence.
  • Dissemination: Sharing intelligence with relevant stakeholders.

This framework ensures a systematic method for developing and leveraging threat intelligence programs.

2. Data Collection Sources

Effective threat intelligence begins with robust data collection from both internal and external sources:

Internal Sources:

  • Endpoint Logs: Data from devices within the organization.
  • Network Traffic: Information from firewalls, routers, and switches.
  • Security Tools: Outputs from SIEMs, IDS/IPS, and antivirus solutions.

External Sources:

  • Private Feeds: Subscription-based services like Recorded Future or Anomali.
  • Community Sharing: Information from ISACs and ISAOs.
  • Public Data: Open-source intelligence (OSINT) from platforms like VirusTotal or Shodan.
Example: An organization might use internal firewall logs to detect unusual outbound traffic and correlate this with external threat feeds to identify potential command-and-control (C2) communications.
Example: A security team may gather IOCs (Indicators of Compromise) from their SIEM (internal) and compare them with OSINT sources like Abuse.ch (external) for validation.

3. Processing and Data Management

Raw data must be processed to extract meaningful insights:

  • Standardization: Utilizing formats like STIX and TAXII to ensure consistency.
  • Scoring Systems: Applying CVSS (Common Vulnerability Scoring System) to assess the severity of vulnerabilities.
Example: By converting diverse threat data into STIX format, analysts can more easily share and interpret information across different platforms and organizations.

4. Analysis Techniques

This is the core of the course and emphasizes the importance of deep, structured analysis.

Structured Analytic Techniques:

  • ACH (Analysis of Competing Hypotheses): Evaluating multiple hypotheses to determine the most probable explanation.
  • Cyber Kill Chain: Understanding attack stages to disrupt adversaries (e.g., Reconnaissance → Delivery → Exploitation).
  • Diamond Model: Maps adversary, victim, infrastructure, and capability relationships.

Campaign Analysis:

  • MITRE ATT&CK Framework: Mapping adversary tactics and techniques to understand behavior patterns.
  • Heatmaps and Visualizations: Identifying trends and anomalies in attack data.

Visual Analysis

Visual Analysis is a technique used by cyber threat analysts to detect patterns, anomalies, and relationships in large datasets by representing the data visually. Instead of reviewing long logs or tables, visual tools allow analysts to quickly interpret complex attack data and identify potential threats more efficiently.

Real-World Example:

Imagine a SOC team investigating a series of login attempts. Instead of combing through thousands of log entries, they use a heatmap that highlights login activity by time and location. This immediately reveals that most logins are from internal IPs, but there’s a suspicious spike from a foreign country at 3 AM, which could indicate a brute-force or credential stuffing attempt.

Tools Often Used:

  • Maltego – for mapping relationships between actors and infrastructure.
  • ELK Stack (Elasticsearch, Logstash, Kibana) – for visualizing logs and timelines.
  • MITRE ATT&CK Navigator – to track adversary techniques across campaigns.

Course of Action (CoA)

In the Course of Action step, analysts and defenders recommend specific defensive or responsive actions based on the findings from threat intelligence. These actions are tied closely to where the adversary is in the Cyber Kill Chain and the nature of their tactics.

Real-World Example:

If an organization detects a phishing campaign that leads to credential theft (Delivery → Exploitation in the Kill Chain), a recommended course of action might include:

  • Blocking the phishing domain.
  • Resetting affected user passwords.
  • Deploying Multi-Factor Authentication (MFA).
  • Educating employees on phishing recognition.

The Diamond Model can also assist by analyzing the adversary, their infrastructure, capabilities, and the victim profile to suggest targeted responses.

Example: A campaign using phishing and credential dumping techniques can be tracked using ATT&CK to predict the next steps.
Example: During the analysis of a phishing campaign, ACH can help determine whether the observed activities align more closely with financially motivated cybercriminals or state-sponsored actors.

5. Attribution and Bias Management

Attributing cyberattacks to specific actors involves careful consideration:

  • Attribution Challenges: Similar tools and techniques can be used by different threat actors.
  • Cognitive Biases: Awareness of biases like confirmation bias is crucial.
  • Logical Fallacies: Avoiding flawed reasoning that leads to false conclusions.

Nation-State Attribution

Nation-State Attribution is the process of linking a cyberattack to a state-sponsored actor. This is particularly complex and sensitive because it involves geopolitical implications and requires strong, corroborated evidence. Analysts typically use a combination of malware signatures, TTPs (Tactics, Techniques, and Procedures), infrastructure, and historical context.

Real-World Example:

A ransomware variant is discovered in a bank’s network. The malware uses custom encryption routines and communicates with C2 servers linked to known infrastructure used by a group like APT28 (Fancy Bear). These are linked through:

  • Malware code similarity.
  • Infrastructure re-use (same domains or IPs).
  • Timezone-based activity patterns.

The analysis might suggest Russia-based nation-state involvement, but analysts must avoid jumping to conclusions due to false flag tactics — where attackers mimic other groups to mislead attribution.

Example: Jumping to conclusions based on previous incidents without verifying data can lead to false positives.
Example: The presence of a particular malware strain should not automatically result in attributing an attack to a known group without supporting evidence.

6. Dissemination and Feedback

The final stage of the lifecycle involves sharing intelligence and gathering feedback.

Intelligence Types:

  • Tactical Intelligence: Short-term, technical details like IPs and malware hashes.
  • Operational Intelligence: Information about ongoing campaigns or TTPs.
  • Strategic Intelligence: High-level analysis for decision-makers.

Sharing Intelligence:

  • Collaboration with other organizations enhances defense.
  • Feedback improves future data collection and analysis.
Example: Sharing IOC data with a sector-specific ISAC can help identify industry-wide threats.
Example: A strategic report highlighting emerging ransomware trends can inform executive decisions on investing in backup and recovery solutions.

Reference: Screenshots and course summary content taken from Advanced Cyber Threat Intelligence - LinkedIn Learning.

Comments

Popular posts from this blog

Deep Dive into Cybersecurity: Security+ Level Knowledge Without the Certificate

📚 My Cybersecurity Learning Journey Key Topics from a 17-Hour Security+ Course ðŸ”đ CIA Triad Explained Confidentiality: Ensuring that sensitive data is only accessed by authorized users. This is often achieved using encryption and access controls. Integrity: Ensuring data is accurate and untampered. Techniques like hashing, checksums, and digital signatures help validate that data hasn't been altered. Availability: Making sure systems and data are accessible when needed. Achieved through backups, redundancy, load balancing, and fault-tolerant design. ðŸ”đ Types of Threats Malware: Includes viruses, ransomware, worms, and trojans that compromise devices or networks. Social Engineering: Manipulating users into giving up confidential info. Example: Phishing emails. Insider Threats: Employees or contractors misusing access, accidentally or intentionally. Advanced Persistent Threats (APTs): Long-term targeted attacks, often by well-funded threat actors. Zero...

āŠŠ્āŠ°ાāŠ‡āŠ āŠļ્āŠ•ેāŠŪ: āŠœો āŠĪāŠŪાāŠ°ે āŠ‡āŠĻાāŠŪ āŠŪેāŠģāŠĩāŠĩા āŠŪાāŠŸે āŠšૂāŠ•āŠĩāŠĢી āŠ•āŠ°āŠĩી āŠŠāŠĄāŠĪી āŠđોāŠŊ āŠĪો āŠĪે āŠ‡āŠĻાāŠŪ āŠĻāŠĨી

Awareness is necessity āŠķું āŠĪāŠŪāŠĻે āŠ•્āŠŊાāŠ°ેāŠŊ āŠ•ોāŠˆ āŠ•ોāŠē્āŠļ āŠ†āŠĩ્āŠŊા āŠ›ે āŠ•ે āŠœેāŠŪાં āŠĪāŠŪે āŠ•ોāŠˆ āŠŠāŠĢ āŠ“āŠĻāŠēાāŠ‡āŠĻ āŠķોāŠŠિંāŠ— āŠĩેāŠŽāŠļાāŠ‡āŠŸāŠŪાંāŠĨી āŠ‡āŠĻાāŠŪ āŠ…āŠĨāŠĩા āŠēોāŠŸāŠ°ી āŠœીāŠĪી āŠēીāŠ§ી āŠđોāŠŊ āŠĪેāŠĩું āŠ•āŠđે āŠ›ે? āŠķāŠ•્āŠŊāŠĪા āŠ›ે āŠ•ે āŠ† āŠ•ોāŠē્āŠļ āŠŦ્āŠ°ોāŠĄ āŠ›ે. āŠļાāŠŊāŠŽāŠ° āŠļ્āŠĩāŠŊંāŠļેāŠĩāŠ• āŠĪāŠ°ીāŠ•ે, āŠŪેં āŠ† āŠŠ્āŠ°āŠ•ાāŠ°āŠĻી āŠ›ેāŠĪāŠ°āŠŠિંāŠĄીāŠ“āŠĻા āŠ•ેāŠŸāŠēાāŠ• āŠ•ેāŠļ āŠĻું āŠ…āŠ§્āŠŊāŠŊāŠĻ āŠ•āŠ°્āŠŊું āŠ›ે. āŠšાāŠēો āŠļāŠŪāŠœીāŠ āŠ•ે āŠ† āŠŠ્āŠ°āŠ•ાāŠ°āŠĻી āŠ›ેāŠĪāŠ°āŠŠિંāŠĄી āŠ•ેāŠĩી āŠ°ીāŠĪે āŠĨાāŠŊ āŠ›ે? !! āŠ›ેāŠĪāŠ°āŠŠિંāŠĄી āŠ•āŠ°āŠĻાāŠ° āŠĪāŠŪāŠĻે āŠ•ોāŠˆāŠŠāŠĢ āŠĩિāŠķ્āŠĩāŠļāŠĻીāŠŊ āŠ“āŠĻāŠēાāŠ‡āŠĻ āŠķોāŠŠિંāŠ— āŠļાāŠ‡āŠŸāŠŪાંāŠĨી āŠ•āŠ°્āŠŪāŠšાāŠ°ી āŠđોāŠĩાāŠĻુ āŠ•āŠđે āŠ›ે.āŠĪેāŠ“ āŠĪāŠŪāŠĻે āŠļાāŠ‡āŠŸ āŠŠāŠ°āŠĨી āŠĪāŠŪાāŠ°ી āŠ›ેāŠē્āŠēી āŠ–āŠ°ીāŠĶી āŠĩિāŠķેāŠĻી āŠĩિāŠ—āŠĪો, āŠ‰āŠĪ્āŠŠાāŠĶāŠĻ āŠ…āŠĻે āŠ“āŠ°્āŠĄāŠ° āŠĻી āŠĩિāŠ—āŠĪો āŠļાāŠĨે āŠĪāŠŪāŠĻે āŠŪāŠĻાāŠĩāŠĩાāŠĻો āŠŠ્āŠ°āŠŊાāŠļ āŠ•āŠ°ે āŠ›ે. āŠœ્āŠŊાāŠ°ે āŠ•ોāŠˆ āŠĩ્āŠŊāŠ•્āŠĪિ āŠŪાāŠĻે āŠ›ે āŠ•ે āŠ›ેāŠĪāŠ°āŠŠિંāŠĄી āŠ•āŠ°āŠĻાāŠ° āŠ“āŠĻāŠēાāŠ‡āŠĻ āŠļાāŠ‡āŠŸāŠĻો āŠ•āŠ°્āŠŪāŠšાāŠ°ી āŠ›ે, āŠĪ્āŠŊાāŠ°ે āŠĪેāŠ“ āŠĪāŠŪāŠĻે āŠĩિāŠĩિāŠ§ āŠ‡āŠĻાāŠŪો āŠœેāŠĩા āŠ•ે āŠēેāŠŠāŠŸોāŠŠ, āŠŸીāŠĩી, āŠŪોāŠŽાāŠ‡āŠē āŠŦોāŠĻ āŠĩિāŠķે āŠ†āŠ•āŠ°્āŠ·āŠ• āŠŊોāŠœāŠĻાāŠ“ āŠ†āŠŠે āŠ›ે āŠ…āŠĻે āŠĪāŠŪાāŠ°ી āŠŠાāŠļેāŠĨી āŠāŠ• āŠ‡āŠĻાāŠŪ āŠŠāŠļંāŠĶ āŠ•āŠ°āŠĩાāŠĻો āŠĩિāŠ•āŠē્āŠŠ āŠ†āŠŠે āŠ›ે.āŠœ્āŠŊાāŠ°ે āŠĪāŠŪે āŠĨોāŠĄી āŠ°ુāŠšિ āŠŽāŠĪાāŠĩો āŠ…āŠĻે āŠ‡āŠĻાāŠŪ āŠŠāŠļંāŠĶ āŠ•āŠ°ો āŠĪ્āŠŊાāŠ°ે āŠ‰āŠē્āŠēેāŠ–િāŠĪ āŠ‡āŠĻાāŠŪāŠŪાંāŠĨી, āŠĪેāŠ“ āŠĪāŠŪāŠĻે SMS āŠĪāŠ°ીāŠ•ે āŠāŠ• āŠēિંāŠ• āŠŪોāŠ•āŠēે āŠ›ે.āŠŪોāŠ•āŠēેāŠēી āŠēિંāŠ• āŠ āŠ›ેāŠĪāŠ°āŠŠિંāŠĄીāŠĻી āŠēિંāŠ• āŠ›ે āŠœે āŠĪāŠŪાāŠ°ી āŠĩિāŠ—āŠĪો āŠœેāŠĩી āŠ•ે āŠŽેંāŠ• āŠĩિāŠ—āŠĪો āŠĪેāŠŪāŠœ āŠĩ્āŠŊāŠ•્āŠĪિāŠ—āŠĪ āŠŪાāŠđિāŠĪી āŠŪાāŠŸે āŠŠૂāŠ›ે āŠ›ે.āŠĻોંāŠ§āŠĢી āŠ•āŠ°āŠĪી āŠĩāŠ–āŠĪે, āŠĪે āŠĪāŠŪāŠĻે āŠĪāŠŪાāŠ°ા āŠļ્āŠĨા...

āŠ‘āŠĻāŠēાāŠ‡āŠĻ āŠŽેંāŠ•િંāŠ— āŠ›ેāŠĪāŠ°āŠŠિંāŠĄી āŠĩિāŠķે āŠļાāŠŊāŠŽāŠ° āŠļુāŠ°āŠ•્āŠ·ા āŠŸીāŠŠ્āŠļ

Awareness is necessity āŠ†āŠœāŠ•ાāŠē, āŠ“āŠĻāŠēાāŠˆāŠĻ āŠŽેંāŠ•િંāŠ— frauds āŠĶિāŠĩāŠļેāŠĻે āŠĶિāŠĩāŠļે āŠĩāŠ§ી āŠ°āŠđી āŠ›ે. āŠˆāŠĻ્āŠŸāŠ°āŠĻેāŠŸ āŠ‰āŠŠāŠŊોāŠ—, āŠˆāŠĻ્āŠŸāŠ°āŠĻેāŠŸ āŠļુāŠ°āŠ•્āŠ·ા āŠ…āŠĻે āŠļાāŠŊāŠŽāŠ° āŠ•્āŠ°ાāŠˆāŠŪ āŠ…ંāŠ—ે āŠœાāŠ—ૃāŠĪિ āŠ•્āŠ°ાāŠˆāŠŪ āŠ˜āŠŸાāŠĄāŠĩાāŠŪાં āŠŪāŠĶāŠĶāŠ°ૂāŠŠ āŠĨāŠˆ āŠķāŠ•ે āŠ›ે. āŠĪેāŠĨી āŠ…āŠđીં āŠ•ેāŠŸāŠēીāŠ• Security guidelines āŠŠ્āŠ°āŠĶાāŠĻ āŠ•āŠ°āŠĩાāŠŪાં āŠ†āŠĩી āŠ›ે āŠœે āŠĪāŠŪાāŠ°ે āŠŽેંāŠ• āŠŸ્āŠ°ાāŠĻ્āŠેāŠ•્āŠķāŠĻ āŠĶāŠ°āŠŪિāŠŊાāŠĻ āŠ…āŠĻુāŠļāŠ°āŠĩી āŠœોāŠˆāŠ. āŠļેāŠŦ āŠŽેંāŠ• āŠŸ્āŠ°ાāŠĻ્āŠેāŠ•્āŠķāŠĻ āŠŸિāŠŠ્āŠļ: SMS āŠĶ્āŠĩાāŠ°ા āŠ…āŠĨāŠĩા āŠˆāŠŪેāŠˆāŠē āŠĶ્āŠĩાāŠ°ા āŠŪોāŠ•āŠēāŠĩાāŠŪાં āŠ†āŠĩેāŠē ATM PIN āŠ•ોāŠĄ āŠ…āŠĻે OTP "āŠĩāŠĻ āŠŸાāŠˆāŠŪ āŠŠાāŠļāŠĩāŠ°્āŠĄ" āŠ•ોāŠˆāŠŠāŠĢ āŠļાāŠĨે āŠ•્āŠŊાāŠ°ેāŠŊ āŠœાāŠđેāŠ° āŠ•āŠ°āŠķો āŠĻāŠđીં, āŠŠāŠ›ી āŠ­āŠēે āŠĪે āŠŽેંāŠ•āŠŪાં āŠ•āŠ°્āŠŪāŠšાāŠ°ી āŠđોāŠŊ, āŠ•ાāŠ°āŠĢ āŠ•ે āŠŽેંāŠ• āŠĪāŠŪāŠĻે āŠĪāŠŪાāŠ°ા āŠ–ાāŠĪા āŠ…āŠĨāŠĩા āŠ•્āŠ°ેāŠĄિāŠŸ āŠ•ાāŠ°્āŠĄāŠĻા āŠ•ોāŠĄ āŠĩિāŠķે āŠ•્āŠŊાāŠ°ેāŠŊ āŠŠૂāŠ›āŠĪી āŠĻāŠĨી. āŠŽેંāŠ•િંāŠ— āŠĩ્āŠŊāŠĩāŠđાāŠ°ો āŠ•āŠ°āŠĩા āŠŪાāŠŸે āŠŠāŠŽ્āŠēિāŠ• āŠ•ોāŠŪ્āŠŠ્āŠŊુāŠŸāŠ°āŠĻો āŠ‰āŠŠāŠŊોāŠ— āŠ•āŠ°āŠĩાāŠĻું āŠŸાāŠģો. āŠœો āŠĪāŠŪે Public Wi-Fi āŠĶ્āŠĩાāŠ°ા āŠˆāŠĻ્āŠŸāŠ°āŠĻેāŠŸ āŠļાāŠĨે āŠœોāŠĄાāŠŊેāŠēા āŠđોāŠĩ āŠĪો āŠˆāŠēેāŠ•્āŠŸ્āŠ°ોāŠĻિāŠ• āŠŽેંāŠ•િંāŠ— āŠĩ્āŠŊāŠĩāŠđાāŠ°ો āŠ•āŠ°āŠĩાāŠĻું āŠŸાāŠģો. āŠĩોāŠŸ્āŠļāŠāŠŠ, āŠŦેāŠļāŠŽુāŠ•, āŠŸેāŠēિāŠ—્āŠ°ાāŠŪ āŠĩāŠ—ેāŠ°ે āŠŠāŠ°, āŠˆāŠŪેāŠˆāŠē, āŠšેāŠŸ્āŠļ āŠ…āŠĨāŠĩા āŠŪેāŠļેāŠœāŠŪાં āŠ†āŠŠેāŠēી āŠ•ોāŠˆāŠŠāŠĢ āŠēિંāŠ• āŠĶ્āŠĩાāŠ°ા āŠ–ોāŠēāŠĪી āŠŽેંāŠ•િંāŠ— āŠĩેāŠŽāŠļાāŠˆāŠŸ āŠŠāŠ° āŠŽેંāŠ•āŠĻી āŠĩિāŠ—āŠĪો āŠ…āŠĨāŠĩા āŠ“āŠģāŠ–āŠŠāŠĪ્āŠ° āŠ•્āŠŊાāŠ°ેāŠŊ āŠĶાāŠ–āŠē āŠ•āŠ°āŠķો āŠĻāŠđીં. āŠđંāŠŪેāŠķા personal computer āŠ…āŠĻે latest āŠ“āŠŠāŠ°ેāŠŸિંāŠ— āŠļિāŠļ્āŠŸāŠŪ āŠļાāŠĨે āŠļ્āŠĨાāŠŠિāŠĪ āŠŪોāŠŽાāŠ‡āŠē āŠ‰āŠŠāŠ•āŠ°āŠĢો āŠŠāŠ° āŠŽેંāŠ•િંāŠ— āŠĩ્āŠŊāŠĩāŠđાāŠ°...

Protecting Yourself from Online UPI Fraud in India

Awareness is necessity As online transactions continue to gain popularity in India, so does the risk of online fraud. One of the widely-used payment systems in the country is Unified Payments Interface (UPI), which enables users to instantly transfer funds between bank accounts. However, with the rise in digital transactions, instances of UPI fraud have also increased. In this blog, we will discuss the various types of UPI frauds, provide tips for mitigation, and highlight the helpline services available to assist victims. Types of UPI Fraud: SIM Card Swapping: Scammers convince telecom service providers to issue a new SIM card linked to the victim's mobile number. This allows them to intercept OTPs (One-Time Passwords) sent during UPI transactions. Phishing: Fraudsters send deceptive emails or messages posing as legitimate institutions, tricking users into revealing their UPI credentials or other sensitive information. Remote Access Fraud: Fraudsters gain unautho...